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This article describes the performance of the all-digital data-transition tracking

loop (DTTL) with coherent or noncoherent sampling. The effects of few samples
per symbol and of noncommensurate sampling rates and symbol rates are addressed

and analyzed. Their impacts on the loop phase-error variance and the mean time

to lose lock (MTLL) are quantified through computer simulations. The analysis

and preliminary simulations indicate that with three to four samples per symbol,

the DTTL can track with negligible jitter because of the presence of Earth Doppler

rate. Furthermore, the MTLL is also expected to be large enough to maintain lock

over a Deep Space Network track.

I. Introduction

In modern digital communication systems, analog-to-

digital conversion (ADC) is performed as far toward the

front end as possible using available technology. Usually,

the received signal is amplified and then downconverted to
the appropriate frequency for digital conversion. There-

after, various system functions are performed digitally, in-

cluding carrier, subcarrier, and symbol synchronization,

as well as signal detection and decoding. Depending on

the application, either the baseband signals (inphase and

quadrature) or the intermediate frequency (IF) signal can
be sampled. Furthermore, the sampling clock can be free-

running or controlled by the symbol-synchronization loop.

In the latter case, the sampling clock can be adjusted to

obtain an integer number of samples per cycle of the IF

signal, or to obtain an integer number of samples per re-
ceived symbol. All of these issues affect the final architec-

ture and design of a receiver and influence the amount of

cross-coupling among the various loops.

Since sampling is done up front, the various track-

ing loops need to be implemented digitally. The classical

analog integrate-and-dump (I_:D) filters, which are typi-

cally part of the loop arms (inphase and quadrature), must

be replaced by digital accumulators. This article inves-

tigates the performance of the all-digital data-transition

tracking loop (DTTL) with small noninteger numbers of
samples per symbol. In the previous version of the Ad-

vanced Receiver (ARX I) [1], the sampling was performed
synchronously with the symbol rate, and a large number

of samples per symbol were available. In the current ver-

sion of the Advanced Receiver (ARX II), the sampling is

performed asynchronously and the sample clock is indepen-

dent of the symbol rate. At the highest required data rate
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of6.6Msymbols/secandtheprocessingrateof 20 MHz for
the Block V receiver, only about three samples per symbol

are obtained.

Some analytical results for tile phase-error variance
of the analog DTTL were first derived in [2], where the

input was an analog signal and symbol and midphase de-

tection were performed with analog I&D filters. Later, the

analysis was reworked [3], taking into account variations of
the equivalent noise spectrum with respect to normalized

phase error.

The interest here is in the loop response and perfor-

mance of all-digital DTTLs, where digital symbol detec-

tion and digital midphase accumulation are used. There
are two sampling scenarios: one is to sample the signal

instantaneously, and the other is to obtain the sample by

I&D sampling of the signal. The instantaneous sampling

technique can be used when the sampling rate is signifi-

cantly higher than the symbol rate. The I&D sampling

technique should be used when the number of samples per

symbol is small. If the received symbol waveform is a per-
fect square wave, the samples by instantaneous sampling

all have equal amplitude. The samples by I&D sampling

also have equal amplitude, except for the first sample of ev-

ery symbol which has a different polarity from the symbol
immediately preceding it. These changes in symbol polar-

ity are referred to as the transition boundaries. The first

sample after each transition boundary has a smaller am-
plitude than other samples due to integration across the

transition boundary. The all-digital DTTL can operate

on either type of sample. It is worthwhile noting at this

time that when the received signal is filtered and instanta-

neously sampled, the process can be modeled to the first

degree by I&D sampling of an ideal waveform. Thus, I&D

sampling can be thought of as a tool to model the filtering

operations in the receiver.

The components in the all-digital DTTL affected by

the type of sampling are the symbol detector and the mid-

phase accumulator. For instantaneous sampling, the sym-
bol detector accumulates all samples in the current symbol

epoch. The midphase detector accumulates all samples in
the current transition-detection window. For I&D sam-

pling, the problem is slightly different. In this case, even
when a sample is in the current symbol epoch, most of its

energy may be from the previous symbol epoch. Therefore,

a more sophisticated rule is needed to determine whether

a particular sample should be used for the detection of a

particular symbol.

A reasonable criterion is to include a particular sample

in the current symbol if more than half of its energy is from

the current symbol. This criterion leads to a simple rule

for the operation of the symbol and midphase detectors.
The rule is as follows: the first sample after each symbol

boundary should belong to the previous symbol if the time
offset between the sample and the symbol boundary is less

than half of the sampling interval; otherwise, the sample

belongs to the current symbol. A sample mark is one-half

of a sampling interval ahead of its respective sample time
for I&D sampling, and is the respective sample time for in-

stantaneous sampling. Thus, the rule can be restated: the

symbol detector accumulates all samples with their sam-

ple marks in the current symbol epoch, and the midphase
detector accumulates all samples with their sample marks

in the current transition-detection window. Therefore, the

DTTL with I&D sampling is similar to that with instan-

taneous sampling if the concept of a sample mark is used.

To simplify the mathematical analysis, the effects

of unequal I&D sample amplitude immediately following
transition boundaries are ignored, and instead equal am-

plitude for all I&D samples is assumed.

To illustrate the differences between analog and all-

digital DTTLs, the noiseless case is considered first. Note
that if the input is an analog signal, the midphase inte-

grator can produce a nonzero error voltage no matter how

small the phase error is. Thus, a correction voltage can

be generated at every symbol transition whenever a phase
error exists. Therefore, the analog DTTL has infinite res-

olution for phase detection.

In contrast, the all-digital DTTL has only finite res-

olution for phase detection. This is illustrated in the fol-

lowing example. Suppose that there is an even number

of samples per symbol. When a symbol transition occurs,

the digital midphase accumulator can produce a nonzero

voltage only if the phase error causes sample slipping (as-
suming samples of equal amplitude). As long as the phase

error stays within a range of values that avoids sample

slipping, the loop always generates a no-error signal. This

range of undetectable phase errors accounts for the finite
resolution of the all-digital DTTL. The more samples per

symbol that are used, the higher the achievable resolution,

and the closer the all-digital DTTL is to its analog coun-

tcrpart. A key question is the impact of the all-digital
DTTL's finite rcsolution on the phase-error variance for

few samples per symbol (say, four or five samples).

Another issue in an all-digital implementation is the

effect of a noninteger number of samples per symbol: If

the sampling clock is driven by the symbol-synchronization

loop, the number of samples per symbol can be made an

exact even integer, which reduces the self-noise generated
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in themidphaseaccumulator(asdiscussedlater). Under
that samplingscenario,thesamplingclockis constantly
adapting as the data rate changes due to Doppler or other

effects. One disadvantage of that scheme is that no fixed
time base is available in the system. On the other hand,

if the sampling clock is free-running and is derived from
a fixed frequency standard, the sampling period is fixed,

although the symbol rate may change. This may result in

a noninteger number of samples per symbol. A model is

derived in this article to analyze the performance of the

DTTL where the sampling rate and the data rate are non-
commensurate. Other issues such as the mean time to lose

lock (MTLL), probability of symbol error, probability of

losing lock, and error variance are also investigated via

simulations. In Section II, a general analysis of the loop is

presented in handling several scenarios. A discussion and

comparison with simulation results are given in Section III,
and the conclusion is given in Section IV.

II. Analysis

The performance of the all-digital data-transition

tracking loop with noncoherent sampling is analyzed here.

The block diagram of the all-digital DTTL is delineated

in Fig. 1. The input r(i) to the DTTL can be obtained

by instantaneous sampling or by I&D sampling. For the

Advanced Receiver II, the number of samples per symbol

becomes small at high data rates, and therefore the I&bD
sampling technique is used. In the subsequen_ derivation,

equal-amplitude samples are assumed.

Noncoherent sampling means that the sampling clock
runs independently of the estimated symbol phase, i.e.,

the sampling time interval and the sampling time do not

change with the estimated symbol phase. This is not an

issue if there are many samples per symbol. The problem

becomes complex as the number of samples per symbol
decreases. The proposed Advanced Receiver II has about

three to four samples per symbol at high data rates (the

goal is 6.6 Msymbols per see). Noncoherent sampling re-

sults in a noninteger number of samples per symbol. All

of these factors affect the performance of the DTTL by

changing its S-curve and by introducing self-noise. Con-

sidered here are the probability of loss of lock, the MTLL,

the degradation of the symbol detection, and the phase-

error variance. An approximate theory is presented for a

first-order DTTL. The approach is to derive the S-curve

and then solve the Fokker-Planck equation to get the den-
sity function of the phase error. The phase-error variance

and the degradation of the symbol detection can be eval-

uated from the phase-error density function.

To illustrate the phenomenon of self-noise, a simple

example is shown in Fig. 2, where there are five samples per

symbol. Assumed are no thermal noise and perfect track-

ing at a particular moment. The output of the symbol-
transition detector is not zero because it sums three sam-

ples from the first symbol and two samples from the second

symbol (Fig. 2a). Notice that this situation occurs for ev-

ery symbol interval as long as the loop maintains perfect

tracking. The nonzero output of the loop filter will gradu-

ally drag the loop away from the perfect tracking condition

until the polarity of the output of the symbol-transition de-

tector changes (Fig. 2b). The loop filter cannot eliminate

this type of self-noise. The problem is more complex if the
number of samples per symbol is not an integer. In order

to describe this phenomenon, three useful parameters are
introduced here. Let/_ denote the number of samples per

symbol, which may not be an integer, and ot denote the
offset of the first sample mark in a received symbol from

the symbol boundary. By convention, c_ is normalized and

is measured as a percentage of the sampling interval. If fl

is an integer, c_ remains constant; if fl is not an integer,
a varies from symbol to symbol. Let the received symbol

be numbered 0, 1, 2, ..., and let the value ofct at the first

symbol be denoted as a0 -= 7, which is referred to as tile

initial sampling offset. The values of c_ at the subsequent

symbols, namely, al, cr,,..., can be computed from fl and
7. The number of sample marks in a transition-detection

window and the number of sample marks in a symbol-

detection window are functions of a. Thus the output of

the symbol detector and that of the transition detector
fluctuate from symbol to symbol as a_. This subject will
be further discussed later.

Another important observation about the DTTL with

noncoherent sampling is that there is inherent phase error
due to finite samples per symbol. To illustrate this phe-

nomenon, consider the example shown in Fig. 3, where

every symbol contains four samples. As long as the es-

timated phase lies between tl and 12, the error signal is

always zero (or nearly zero if the received symbol does not
have a perfect square waveform or if there are unequal-

strength samples from I&:D sampling), and the DTTL re-

mains in tracking. However, unresolved phase ambiguity
still exists within the interval from tl to t2. Mathemati-

cally, this phase ambiguity can be explained by a step-like

S-curve. This phenomenon might have little effect on sym-

bol detection performance if straight accumulation is used

to detect the symbols. However, if weighted accumulation

is used to detect the symbols, the phase ambiguity can in-

troduce misweighting and thus degrade performance. The

symbol-error probability can be obtained by simulation.

Before proceeding to the mathematical analysis, ex-
amine the all-digital DTTL block diagram again in Fig. 1.

The error-signal accumulator between the loop filter F(z)

and the multiplier performs an averaging function so that
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the subsequent loop filter can operate at a slower speed.

The loop bandwidth is determined primarily by the loop

filter F(z). Thus the presence of the accumulator is sim-
ply for hardware convenience. In the following analysis,
the DTTL is considered without the error-signal accumu-

lator.

A. Mathematical Model

Assuming that the carrier and subcarrier (if any) have
been removed in an ideal fashion, the received waveform is

given by

,(t) = vN_, a_p(t - kT) + .(t)
k

where S is the data power, n(t) is white Gaussian noise

with two-sided power spectral density N0/2 W/Hz, ak =
+1 represents the polarity of the kth symbol, and p(t) is

the square-wave function having value 1 for 0 < t < T

and having value 0 elsewhere. With I&D sampling, the
ith sample can be expressed as

r(i) = v/-Sak + n(i) (1)

where it is assumed that the ith sample is derived from the

kth symbol, n(i) is a zero-mean Gaussian random variable

with variance a 2 = N0/(2T,), and Ts is the sampling inter-
val. Note that equal sample strength is assumed in Eq. (1).

Let the phase error _ (in cycles) be defined as

0-_
2r

where 0 is the actual received symbol phase and 0 is the

estimated symbol phase. Note that )_ should have a value

between -0.5 and 0.5. The error signal is affected by the

locations of samples within their respective received sym-

bols. In order to quantify this effect, a set of twelve A

functions is defined, six for the )_ > 0 case and six for

the )_ < 0 case. They are the numbers of sample marks

contained in their respective intervals defined in Fig. 4(a).

The output of the inphase accumulator x(k) and the out-

put of the midphase accumulator y(k) can be expressed in
terms of the A functions. If )_ > 0, then

_(k) = vN(Atak + A_a_+l) + -x(k) + ._(k) + -3(k)

•(k + I) = v_(±3.k+_ +_x_.k+2) + ._(k) + ,_(k) +,,_(k)

and

(2)

where nj(k), 1 <_ j _< 6 are zero-mean Gaussian ran-
dom variables with their respective variances (At -As)a 2,

Asg _, A_a 2, (A6 - A_)cr _, (A3 + A2 - A6)_r 2, and A4_ 2.

The A functions are computed using the following

equations:

Az = L(1+ ,x),3- od - _ - _J

,_ = L2,_- od - L(1+ ,x)_'- _j

A4 = L(2+ _,)Z- _J - L2Z- ,_J

/ I.P- o,J- L(1+ ,x- (wI2))Z - od
A_ / 0

f L(1 + ,x + (w/2))/_ - _J - LZ - aJ
A6

L(1+ ,x+ (w/2))D - o,J - [(1 + .x- (w/2))D - od

if W/2 > l+)t

if W/2 < 1+)_

if W/2 > 1+_

if W/2 < 1 --I--A

(3)
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if A > O, and

A_ = [(1 + )Off - a] + 1

if -,_fl + a is not an integer

if -)_fl + a is an integer

Aq = L(2+ .x)fl - <1 - L,o- od

A_.= L/_- od - L(1+ _),o- _J (4)

/

zx._= _ Ifl - ,_J- L(1+ .x- (w/2)),o - _j

I,L(1+ ..x+ (Wl2))fl- od - L(1+ ._- (wI2))fl - od

if W/2 > -_

if W/2 < -A

f

zx; = _ L(1+ ,x+ (w/2))fl- _j - Lfl- _J

[ 0

if W/2 > -A

if W/2 < -,X

if ), < O, where LyJ is the greatest integer strictly less than

y.

In the above equations, W is the width of the
transition-detection window. The derivations of the twelve

A functions are similar. Two examples are given here, A_
and A_. To derive A2, the beginning of the kth received

symbol is used as the reference point. The number of sam-

ple marks in the kth received symbol is L_ -aJ. The

number of sample marks from the beginning of the kth re-
ceived symbol to the end of the kth estimated symbol is

[(1 + A)J3 - aJ. Equation (3) follows by observing that the

number of sample marks from the end of the kth received

symbol to the end of the kth estimated symbol is As. To

derive A_, the beginning of the kth received symbol is also
used as the reference point. The number of sample marks

in the kth received symbol is [fl- aJ. The number of sam-

ple marks from the beginning of the kth received symbol to

the end of the (k + 1)th estimated symbol is /(2 + _)fl- _J.

Equation (4) follows by observing that the number of sam-
ple marks from the end of the kth received symbol to the

end of the (k + 1)th estimated symbol is A_.

The error signal e(k) is given by

e(k)=z(k)y(k)

The conditional S-curve is defined by

g(al _) = E.,,{e(k)l), , ,_}

where En,. represents the conditional expectation on )_
with respect to the noise and the signal. Following sim-

ilar mathematical manipulation as in [2],
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\ /

+ _/_Z(A3'+ AOE, e_p(-

where Es is the symbol energy-to-noise ratio, namely,

ST

No

Using the same approach yields a similar result for the ,k < 0 case:

4E{e(k)[A < O,a} _ A_ + A_ erf/,/(A_kV + A_)E,_)]

A_-A_ erf((A_--AI3)¢E,/(13(A_--AI4)))+ ----y--

A_d-A_ {exp( A_d-A_ E,)d_exp( (AI-A_)2E'_}
- X/a'fl(A] + A[)Es fl (A] + A[)/3 ')
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Observethat g(_l_) is the (unconditional) S-curve if
is a constant. If c_ changes rapidly "from symbol to sym-

bol, the loop filter will smooth its effect on the error signal.

Therefore, the S-curve is obtained by averaging the above
equations over a certain set of values of a, which is de-

termined by the initial sampling offset and the number

of samples per symbol. This problem is addressed in the

subsequent discussion.

If fl is an integer, the value of a remains constant

from symbol to symbol, namely, cri = 7 for all i. For this

case, the S-curve can be determined for a given 7. When

7 is 0.5, the S-curve is centered; otherwise, the S-curve is
biased slightly to one side. The phase error is certainly

biased if the S-curve is biased. If fl is an odd integer, the

error signal is not zero when the phase error is zero. This

is a source of self-noise, as discussed before.

Next, consider the effect of a noninteger number of

samples per symbol on the S-curve. To illustrate the con-

cept, assume that l? = 4.1. Suppose that the initial sam-

piing offset 7 is 0.7. Clearly, s0 "- V = 0.7, _1 = 0.6,

_2 = 0.5, or3 = 0.4, or4 = 0.3, a5 = 0.2, c_6 = 0.1, a7 = 0,

C_s = 0.9, a9 = 0.8, cq0 = 0.7, and so on. Consider a

system with a normalized symbol rate of 1 Hz and a one-

sided loop filter bandwidth of 0.05 Hz. The error-signal

fluctuation due to variation of or is averaged by the loop

filter in the same way as the fluctuation due to thermal

noise. Therefore, the S-curve is obtained by averaging the
error signal with respect to noise and all possible values of

a. For the example given here, the set of values for a is

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Figure 5 shows

the conditional S-curve for the fl = 4.1 case with a = 0.5.

Figure 6 shows the unconditional S-curve for the/_ = 4.1

case after averaging over values of o_ belonging to the set
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. There is a

phase ambiguity area in the conditional S-curve in Fig. 5,

i.e, zero error signal for nonzero phase error. The phase

ambiguity is removed in the S-curve in Fig. 6 due to aver-

aging over a. Notice the small bias of the S-curve due to
the particular set of values for or.

Another example is the fl = 4.11 case. The fractional

part of/_, i.e., 0.11, can be decomposed into the two com-

ponents 0.1 and 0.01. Both components contribute to the
values of cq. For instance, if c_0 = 7 = 0.7, then al =

0.59 = 0.7-0.1-0.01, and c_2 = 0.48 = 0.7-0.2-0.02,...

and so on. The same loop bandwidth is assumed as be-

fore. The variation of a due to the component 0.1 changes

quickly relative to the loop bandwidth, and the variation

due to the component 0.01 changes slowly relative to the

loop bandwidth. The S-curve is obtained approximately

by averaging the error signal over all possible values of c_

due to the fast component. The initial sampling offset will

drift slowly from time to time due to the slow component.

The slow component does not affect the instantaneous S-

curve, but it does affect the S-curve gradually by changing

the initial sampling offset. Therefore, the slow component

does contribute to the overall phase-error density function.

Note that the conditional density function for the phase er-

ror can be obtained for any given initial sampling offset.

The phase-error density function can then be derived by

averaging the conditional density function over the initial

sampling offset. The distribution function for the initial

sampling offset can be assumed to be uniform between 0

and 1 or can be determined by simulation.

Partitioning the fractional part of fl into slow and fast

components can only be done approximately, and they are

determined by the loop bandwidth. Let fl = n# + f#,l

+ f#,2, where n# is the greatest integer less than or equal

to fl, f#,l is the fast component, and f#,_ is the slow com-

ponent. The choice of fZ,1 and fp,z is made solely by expe-
rience. In the following discussion, a criterion is provided

for justifying the choice of f#,l-

Let 7 be the initial sampling offset. The set of values,

denoted by D_-_ which {ai} can take on, can be deter-
mined from 3' and fl using the following procedure: sup-

pose that fp,1 contains k digits after the decimal point (for

instance, if f_,l = 0.15, then k = 2). The basic incremental

unit gp is defined as

ga = GCD(10kf_,I, 10k)
i0k

where GCD(a, b) is the greatest common divisor between

a and b. Then Da,7 is given by

Da,._ = {7 + mgalO < m < (1/gz) - 1}

For instance, if 7 = 0.1 and fz,1 = 0.15, then ga = 0.05,

and D#,0.1 = {0.1 + 0.05m10 _< m < 19}. In terms of D_,. r,
the S-curve is given by

g(A]'r) = g_w,,,{g()q_)}

where the expectation is performed with respect to all val-

ues of c_ in D#,.r, which are assumed equiprobable. Let the
one-sided loop bandwidth be BL and let the symbol rate

be R. A valid choice for fa,1 is to ensure that all values in

D_,_ can occur in a 1/BL time interval, i.e., to satisfy the
following equation:

BL_-Rg# (5)



B. The Density Function and Variance of
Phase Error

The steady-state Fokker-Planck Eq. (2) is given by

1 du {B(AIT)P(AIT))

In the above equation,

2BL g(AlT)
A(AI'r) = E_No

f 2BL_2 S(0,_I;)
t3('_17)= \ E, No ]

(6)

where S(w, Air ) is the spectrum of the noise nx(t) defined
as

(n_(t) = E.,.,o,a,,.(e(k)e(k + m)la,r} - g(Xlr)

The solution to Eq. (6) is of the form

(7)If0 x 2A(yI'I) - _ ]P(alT) = Cexp -ff(_l_ dy

In order to use the above equation, S(0, XI7) must be

found, which is a fairly complex task. In the subsequent

derivation, it is assumed that S(0, XI7 ) = WNoT/4. Thus

Eq. (7) can be simplified to

P(AIT) = Cexp • BLRW g(ylT);dy (8)

The phase-error bias E{,_IT} is given by

1/2
E{AI'r} = s-1/2 ,_P('_IT) d,_

The mean-square phase noise a2(X[7) is given by

cr2(AIT): E{A217} - (E{AIT]) _

The phase ambiguity phenomenon is a direct result of

Eq. (8). Note that if g(Y[7) = 0 for -61 < y < e2, the
phase error is uniformly distributed between -el and o.

when E_ approaches infinity.

III. Discussion and Numerical Results

Figure 7 shows the phase-error variance versus symbol

signal-to-noise ratio (SNR) with an even integer number of
samples per symbol. Notice that the phase-error variance

approaches a limit as symbol SNR increases for the given
number of samples per symbol. That limit of the phase-

error variance is due to the phase ambiguity; thus it cannot

be eliminated by increasing the symbol SNR. The phase

ambiguity decreases as the number of samples per symbol
increases.

Note that the phase ambiguity phenomenon may have

an effect on the performance of weighted symbol detec-

tion. For illustration, Fig. 8 shows simulation results of

the MTLL of the all-digital DTTL for various symbol
SNRs and for 4 and 100 samples per symbol. The plot

depicts normalized MTLL, which is the MTLL times the

loop bandwidth. Notice that it usually takes a long time to

simulate the MTLL performance; therefore, the loop oper-

ation was purposely simulated at a very low loop SNR (on

the order of 3 to 9 dB) to guarantee loss of lock within a

"practical" time period. It is clear that the four samples

per symbol case (13 = 4) loses lock more often than the

/3 = 100 case. In the DSN, the symbol loop SNR is so high

that the loop is expected to maintain lock over a whole
track. It is still expected that the MTLL for the /3 = 4

case will be less than for the/3 = 100 case, but both of

these will be large enough that lock is maintained over a
whole track.

In a practical communication system, Doppler and

Doppler rate are present due to the relative motion be-
tween transmitter and receiver. The effect of the Earth

Doppler rate on a symbol rate of 6.6 Msymbols/sec is about

1 mHz/sec, which is enough to guarantee that the number
of samples per symbol will not remain an exact integer

for long. Consider a scenario designed for 13 = 4 samples

per symbol, but due to Doppler rate, the actual number

of samples per symbol is/3 = 4.0000001. In this scenario,
the basic incremental unit is go = 10-7" When the DTTL

is operating with a 1-mHz-loop bandwidth, the time con-

stant of the loop is about 1000 sec or 6.6 Gsymbols at a

symbol rate of 6.6 Msymbols/sec. Since the loop is effec-

tively averaging over all those symbols, the effect of the
10 -7 basic incremental unit will be enough to smooth the

composite S-curve as discussed earlier. This is because

with a time constant of 1000 sec, Rg_/BL = 6.6 Gsym-

bols xl0 -7 = 660 >> 1 (Eq. 5). This effectively smooths
the S-curve so that the digital loop behaves like its equiv-

alent analog counterpart. For a loop time constant of

1 sec (1-Hz loop bandwidth), Rg_/BL = 0.66. However,
with a time constant of 0.2 sec (5-Hz loop bandwidth),
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Rgp/BL = 0.132; therefore, self-noise might become con-
siderable. But that ease would still exhibit less self-noise

than the exact four samples per symbol scenario. So over-

all, the Doppler rate helps in reducing the self-noise. De-

pending on the actual parameters, the self-noise degra-

dation might become negligible. More simulations with
Doppler rates are planned to verify this concept.

IV. Conclusion

The all-digital DTTL with coherent or noncoherent

sampling is analyzed in this article. Two sampling schemes

are considered, i.e., instantaneous sampling and I&D sam-

piing. The theory presented here is valid for both sam-

piing schemes. The effects of few samples per symbol and

of noncommensurate sampling rates and symbol rates are

addressed and analyzed. The phase ambiguity problem

due to a small number of samples per symbol is illustrated,

and it is shown that the phase ambiguity can be alleviated

when there is a noninteger number of samples per symbol
and the loop filter has appropriate bandwidth. A closed-

form expression for the S-curve is derived for any number

of samples per symbol. Finally, tile interplay between the

loop bandwidth and the number of samples per symbol in
the reduction of self-noise is shown.
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